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SUMMARY

This paper presents a numerical prediction of the formation of Goertler vortices on a curved surface
with e�ect of rotation. The criterion of �ow visualization marking the onset position of Goertler vortices
is employed in the present paper. For facilitating the numerical study, the computation is carried out in
the transformed x and � plane. The results show that the onset position characterized by the Goertler
number, depends on the rotation number Ro, the Prandtl number and the wave number. The value of
critical Goertler number increases with the increase in negative rotation, while the value of Goertler
number decreases with the increase in positive rotation on a concave surface. On the contrary, the value
of critical Goertler number decreases with the increase in negative rotation on a convex surface. The
obtained critical Goertler number and wave number are compared with the previous theoretical and
experimental data. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of Goertler vortices on a curved wall with the e�ect of rotation is of practical
signi�cance for its engineering applications. The Goertler vortices change �ow properties,
such as wall friction, heat transfer rate, and separation characteristics, etc. It is important
when engineers design a practical curved plate in a given �ow to ensure the laminar �ow
control. They also strongly increase the heat transfer in the boundary layer on cooled walls
as in turbine blades. Moreover, the boundary layers developed on curved blades in turbo-
machineries are subjected to rotation. The studies on the Goertler vortices were reviewed by
Herbert [1], and Floryan [2]. Only a few studies on the Goertler vortices on a curved surface
with the e�ect of rotation were discussed by Aouidef et al. [3], Zebib and Bottaro [4] and
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Figure 1. Physical con�guration and curvilinear co-ordinate system: (a) rotating curved channel;
(b) rotating concave surface; and (c) rotating convex surface.

Edo et al. [5], etc. The obtained theoretical values are seen two orders of magnitude below
the corresponding experimental data. By reviewing the criteria of the onset of the longitudi-
nal vortices in boundary layer and channel �ows, the experimental and numerical methods
employed in the literature for determining the onset of longitudinal vortices were summarized
in Reference [6]. Moreover, the study of the formation of longitudinal vortices in a boundary
layer �ow with rotation on a �at plate has been studied by the authors [7]. Some laboratory
data with rotation e�ect have been compared to verify the proposed model.
Several studies were focused on the vortex instability in rotating curved channel �ows

(for example, Mutabazi et al. [8], Matsson and Alfredsson [9], Selmi et al. [10], Matsson
and Alfredsson [11], Wang and Cheng [12], Wang [13], etc.). Although these studies of
the rotating curved channel �ow can be regarded as qualitative references, there are several
important di�erences between the rotating curved boundary layer and curved channel �ows.
The curved channel �ow is consisted of the stable layer on the suction wall and the unstable
layer on the pressure wall, as shown in Figure 1(a). These two layers are directly adjacent
to each other resulting in the interaction between the opposite e�ects of Coriolis force at the
interface. Depending on the direction of rotation, destabilizing e�ects due to the curvature
and the rotation may either enhance or counteract each other. However, the potential �ow
and the wall bound the rotating curved boundary layer. In consequence, non-linear interaction
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of centrifugal force and Coriolis force stabilizes or destabilizes the curved boundary layer
according to the direction of rotation and positive (or negative) curvature. The complicated
�ow structure induced by these two destabilizing mechanism can be observed independently.
It is noted that the theoretical investigations in the literature on the onset of Goertler vortices

on the curved boundary layer �ow with the e�ect of rotation are rather limited and incomplete.
The work was motivated by a desire to explore the extent of destabilization/stabilization of
the Blasius �ow on a curved surface for the formation of Goertler vortices with the e�ect
of rotation. The experimental criteria proposed by Hwang and Lin [6] marking the onset
of longitudinal vortices were employed in the present study. The governing parameters for
the e�ect of rotation on the onset of Goertler vortices are the rotation number Ro=�R=U∞,
Prandtl number, and the wave number a. In the computation, the Prandtl number is 0.7 (for
air), the magnitudes of imposed initial disturbance velocity u0=10−3, and the rotation number
Ro = −12 to 12.

2. THEORETICAL ANALYSIS

Consider a laminar Blasius �ow on a curved wall with a free stream velocity U∞. As shown
in Figure 1(b) and 1(c), the physical curvilinear co-ordinates are chosen such that X mea-
sures the streamwise distance from the leading edge of the curved wall, Y is the distance
normal to the wall, and Z is in the transverse direction. The present study assumes con-
stant �uid thermophysical properties, large radius of curvature R of a curved wall and large
Reynolds number. The basic �ow and energy equations in similarity forms f′′′+ff′′=2=0 and
�′′b + Prf�′b=2=0 can be found readily in many texts, where f(�)= (�XU∞)−1=2,
�b(�)=(T − T∞)=(Tw − T∞) and �=Y (�X=U∞)−1=2. The similarity solutions of the basic
quantities will be used to compute the solution of perturbation equations. The boundary layer
equation governing the basic �ow along a rotating curved surface is reduced to that of sta-
tionary boundary layer (Blasius �ow) if the static pressure on the wall is kept constant. The
free stream condition should be modi�ed because of non–zero relative vorticity in the free
stream. For this reason, the Blasius pro�le is modi�ed by simply adding 2�Y , i.e.

�U= �UBlasius + 2�Y (dimensional form) or

f′=f′
Blasius + 2

�R
U∞

Re−1=2y=f′
Blasius + 2RoRe−1=2

√
x� (dimensionless form): (1)

The other boundary conditions are f′(0)=�b(0)− 1=f′(∞)− 1=�b(∞)=0.
In the region near or upstream of the onset position x∗, the disturbances of longitudinal

vortex type are small and the non-linear terms in the momentum and energy equations may be
linearized. Furthermore, in experiments [14–19] ‘stationary’ longitudinal vortex rolls have been
found periodic with a wave length � in the transverse direction Z . Therefore, the disturbances
superimposed on the two-dimensional basic �ow quantities can be expressed as

G(X; Y; Z) =Gb(X; Y ) + �(X; Y ) exp(ia′Z)

W (X; Y; Z) =w′(X; Y )i exp(ia′Z) (2)
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where G=U;V; P or T , �=u′; v′; p′ or t′. The value a′=2�=� is the dimensional transverse
wave number of the vortex rolls. By consideration of the vortex-type perturbation quantities
in continuity equation, a di�erent expression for W is used.
Substituting Equation (2) into the continuity, Navier–Stokes, and energy equations in curvi-

linear co-ordinates, and subtracting the two-dimensional basic �ow and energy equations under
the assumptions of Re� 1, Ro∼O(1) and R� 1, one can obtain the linearized perturbation
equations.

@u′

@x
+

@v′

@y
− a′w′=0 (3)

Ub
@u′

@X
+ u′

@Ub
@X

+ Vb
@u′

@Y
+ v′

@Ub
@Y

=
�
�
∇2u′ (4)

Ub
@v′

@X
+ u′

@Vb
@X

+ Vb
@v′

@Y
+ v′

@Vb
@Y

=
�
�
∇2v′ − 1

�
@p′

@Y
− 2

R
Ubu′ − 2�u′ (5)

Ub
@w′

@X
+ Vb

@w′

@Y
=

�
�
∇2w′ − 1

�
a′p′ (6)

Ub
@t′

@X
+ u′

@Tb
@X

+ Vb
@t′

@Y
+ v′

@Tb
@Y

=	∇2t′ (7)

where ∇2 = (@2=@Y 2)−a′2 is a two-dimensional Laplacian operator. The perturbation equations
are two-dimensional and of boundary layer �ow type.
Next, one introduces the following dimensionless variables and parameters:

X =Rx; [Y Z]=RRe−1=2[y z]

[Ub u′]=U∞[ �u u]; [Vb v′ w′]=U∞ Re−1=2[ �v v w] (8)

[Tb − T∞ t′]=(Tw − T∞)[�b t]; p′=
�U 2

∞
Re

p; a′=
Re1=2

R
a

Re=
�U∞R

�
; Ro=

�R
U∞

and a vorticity function in the axial direction


=
@w
@y

− @v
@z
=

@w
@y

− av (9)

To obtain equation for the vorticity, one may di�erentiate Equations (5) and (6) by z
and y, respectively, and then eliminate the pressure terms by subtracting one from another.
To derive the equation for v, one may di�erentiate Equation (9) with respect to z. Similarly,
the equation for w can be obtained by di�erentiating Equation (9) by y. It is noted that in
the derivation of equations for v and w, continuity Equation (3) must be considered. By using
also the similarity variable �=y=

√
x, the perturbation equations in � and x plane are found.

@2u
@�2

+
1
2
f

@u
@�

− xf′ @u
@x

− a2xu+
1
2
�f′′u=f′′√xv (10)
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@2t
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+
1
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Pr f

@t
@�

− xPrf′ @t
@x

− a2xt=Pr
@�b
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(
−1
2
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√
xv
)

(11)

@2

@�2

+
1
2
f
@

@�

− xf′ @

@x

−
(
1
2
�f′′ + a2x

)

=−2xaRe1=2K(f′ + Ro)u

−au
(
1
4
√
x
(f − �f′ − �2f′′)

)
+

√
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− xa2w=
√
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− ax
@u
@x
+
1
2
a�

@u
@�

(14)

where K= + 1 in Equation (12) for concave curvature and K=−1 for convex curvature.
It is noted that the �rst term on the right hand side of Equation (12) is the major driving
force of Goertler vortices (both centrifugal force and Coriolis force are coupled). The set of
equations (5)–(9) is a boundary value problem in the �-direction, an initial value problem in
the x-direction, and an eigenvalue problem in the z-direction. The appropriate initial condition
and boundary conditions of the perturbations equations are

u=v=w= t=0 at �=0

u=v=w= t=
=0 at �=∞
u− u0=v=w=
= t=0 at x=0

(15)

For simplicity, the initial amplitude function u0 is set uniform, and the other two velocity
components v and w are set zero. However, the magnitudes of the velocities v and w will be
generated in the next x-steps. The range of the initial amplitude function, u0=10−3 is used
in the present study. In the experiment of Swearingen and Blackwelder [18], the free stream
turbulence level in their well controlled wind tunnel was less than 0.07% that corresponding
to the perturbation velocity u with magnitude between 10−4 and 10−3.
Equations (10)–(14) and boundary conditions (15) in the x − � plane are for unknowns

u, t, 
, v and w with three �xed values of a, Ro and Re. By giving a series value of a and
Ro, the largest ampli�cation of the perturbation quantities along the x-direction determines
the value of critical wave number a∗. One can see that the term −2xaRe1=2f′u on the right-
hand side of Equation (12) may be expressed as −2(x1=2a)(x Re)1=2f′u in which (x1=2a) is
the dimensionless wave number de�ned by using the characteristic boundary layer thickness,
and x Re=�U∞X=� is the local Reynolds number. The radius of curvature does not appear
explicitly in Equations (10)–(14). One may prove analytically the homogeneity of R in Equa-
tions (10)–(14) by considering the dimensionless transformations (8) i.e. v∼R1=2, w∼R1=2,
a∼R1=2, x∼R−1, y∼R−1=2, z∼R−1=2, and 
∼R (variables of u, �, and f are independent
of R). In the computation, the selection of Re does not change the local critical Reynolds
number (xRe)∗ and the critical wave number (x1=2a)∗. This is also proved by using several
values of Re in computation. The present study, Re1=2=250 is used for demonstrating the
results.
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The local friction factor and the local Nusselt number of the basic and perturbed �ows can
be also expressed, respectively, as

CfX =Cfb + Cfp=
�wb + �wp
(1=2)�U 2∞

=2Re−1=2X

[
f′′(0) +

@u
@�

∣∣∣∣
w

]

or

CfX
Cfb

=1 +
@u
@�

∣∣∣∣
w

/
f′′(0) (16)

and

NuX =Nub + Nup=
(hb + hp)X

k
=−Re1=2X

[
�′b(0) +

@t
@�

∣∣∣∣
w

]

or

NuX

Nub
=1 +

@t
@�

∣∣∣∣
w

/
�′b(0) (17)

where �w and h are the local wall shear stress and local heat transfer coe�cient, respectively,
the subscripts b and p indicate the basic and perturbed �ows, and k is the �uid thermal
conductivity. Noted that the NuX is based on the thermal boundary condition of constant wall
temperature.

3. NUMERICAL PROCEDURE

A �nite di�erence scheme based on the weighting function Lee [20] with second order
accuracy in both � and x is used. The step-by-step procedure is listed as follows.
(1) Assign Pr; Re1=2 and Ro to obtain the basic �ow and temperature distributions. The

value of Pr is 0.7, Re1=2=250, and the values of Ro are −0:9 to 12 for concave wall
and Ro=−0:1 to −12 for convex wall in the present study.

(2) Assign zero initial values of v, w, 
 and t, initial velocity at leading edge, u0=10−3

and various values of wave number a.
(3) Solve Equations (10)–(12) for u; t and 
 distributions at the next x-step. Values of


 on boundary are evaluated with previous iteration data of v and w in the interior
region.

(4) Solve Equations (13) and (14) for v and w with the obtained u and 
.
(5) Repeat steps (3) and (4), until the perturbation quantities meet the convergence criteria

at the streamwise position.

Max

(
|g(n+1)i; j | − |g(n)i; j |

g(n+1)i; j

)
610−5 (18)

where g(n)i; j are the perturbation quantities u, v, w, t and 
 of nodal point (i; j) at the
nth number of iteration.

(6) Calculate the local friction factor and the local Nusselt number of the vortex �ow.
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(7) Repeat steps (3)–(6) at the next mainstream position until a desired mainstream
position is reached.

(8) The absolute values of perturbation quantities are growing along the mainstream direc-
tion. One can �nd the mainstream position marked with the subscript i, where the �ow

visualization onset criterion Yi=
∫ X ∗

0 Max|v′| dX
U∞

=2 mm or yi=
∫ x∗

0 Maxj|v(n)i; j | dx=
0:002 is satis�ed, where Yi is the detectable height of vortex spike.

Various onset positions xcr can be determined for di�erent values of wave number a. The
value of a is assigned in the computation, where the range of a=0:2–3.5 and step=0:02. The
minimum xcr denoted by x∗ is the most probable onset position and the corresponding wave
number is denoted by a∗. The local critical Goertler number is G∗

X =2x
∗3=2Re1=2 and the local

wave number is a∗x∗1=2 for this computation.
The criterion for determination of the onset of longitudinal vortices using the technology

of �ow visualization in experiments can be explained as follows:
Flow visualization is one of the most e�ect methods in determining the onset of longitu-

dinal vortices in boundary and channel �ows. There are several �ow visualization techniques
that can be applied, e.g. electrochemical techniques, smoke dye, and particle techniques, and
optical methods. Among these �ow visualization techniques, smoke �ow visualization is used
quite frequently in boundary and channel �ow for air [21–26]. Usually, a light slit is set in
a direction normal to the streamwise direction to observe the smoke distribution. The smoke
particles are injected at the same Y at inlet and may be periodically distributed along the trans-
verse direction if the longitudinal vortices appear. Let the detectable �uctuation displacement
of the smoke in Y direction be �Y, then

�Yi=
∫ �

0
v′ d�=

∫ X ∗

0
Max|v′| dX

U∞
or �yi=

∫ x∗

0
Max

j
|v(n)i; j | dx (19)

where � is the time elapsed for �uid �ow from inlet along the streamwise direction, and
v′ and v are the dimensional and dimensionless normal direction perturbation velocities, re-
spectively. Typically, the onset criterion based on smoke �ow visualization is �Y=0:002 m.
Also, by comparison of the onset criterion between �yi=0:002 and �yi=0:003 in the nu-
merical experiment, the values of onset position x∗ increases less than 5%. Moreover, by
comparison of the onset criterion between �yi=0:002 and �yi=0:004 in the numerical ex-
periment, the values of onset position x∗ increases less than 10%. It is reasonable to set
�yi=

∫ x∗

0 Maxj |v(n)i; j | dx=0:002 in the numerical solution for the onset criterion of Goertler
vortices.
The grids are tested for various �x and �� are listed in Table I. A grid size of �x=0:002,

��=0:02 and �∞=10 is used within 0.2% error to perform the numerical experiment in
the present study. To check the validity of the linear Equations (10)–(14), the order of
magnitude of non-linear terms of perturbation equations near the onset position are checked.
The calculated data are substituted into the individual terms of the x-momentum equation. The
orders of the non-linear terms is two orders of magnitude smaller than the order of linearized
inertia terms. Therefore, the linear theory is valid for the estimation of the onset of Goertler
vortices.
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Table I. Grid size test for Re1=2=250, a∗=1:34, Pr=0:7 and Ro=0.

�x �� x=0:1 0.2 0.3 0.4 0.5

0.002 0.02 0:01437a 0.04952 0.2413 1.733 16.05
0.002 0.01 0.01437 0.04952 0.2412 1.732 16.04
0.001 0.02 0.01431 0.04942 0.2408 1.730 16.02

a These are the maximum values of mainstream velocity u=0:01 at the speci�ed x position.

4. RESULTS AND DISCUSSION

The typical development of the dimensionless perturbation amplitudes u, v, w, and t at x=0:35,
0.4, 0.45, and 0.5 for Pr=0:7, Re1=2=250, a∗=1:34, and Ro=0 is shown in Figure 2. The
magnitude of v and w are larger than those of u and t because the scaling factor Re−1=2 is
included in these quantities. The shapes of the v and w pro�les may be regarded as a vortex
pattern. This �gure also presents the development of the perturbation amplitude quantities in
the streamwise direction.
Figure 3 depicts the dimensionless perturbation amplitude functions at x=0:8, 0.9, 1.0, 1.1,

and 1.2 with negative rotation Ro=−0:5. It is seen that the values of perturbation amplitude
functions are decreased with the stabilizing e�ect of Coriolis force. It is also observed in
this �gure that the pro�les of perturbation amplitude functions are shrunk to smaller � region
due to the rotation e�ect. On the contrary, as shown in Figure 4, the values of perturbation
function are increased, and the sizes of function are enlarged to larger � region with positive
rotation Ro=2. It is noted that positive rotation destabilizes the �ow, as the Coriolis force
acts in the same direction as the centrifugal force.
Figures 5 and 6 depict the typical development of the dimensionless perturbation ampli-

tudes u, v, w, and t on a convex surface. It is shown that the values of perturbation am-
plitude functions are decreased downstream of convex surface with zero rotation, due to the
centrifugal force stabilizes the �ow. On the contrary, as shown in Figure 6, the values of
perturbation function are increased, and the sizes of function are enlarged to larger � region
with negative rotation Ro=−2 on a convex surface with the destabilizing e�ect of Coriolis
force.
It is interesting to study numerically the variations of friction factor and heat transfer

coe�cient after the onset of Goertler vortices. The perturbation friction factor Cfp and heat
transfer rate Nup behaves like a cosine function in the Z-direction (i.e. Cf ∝ @U=@Y ∝ exp(ia′Z)
and Nu∝ @T=@Y ∝ exp(ia′Z)). Although the mean values of friction factor and heat transfer
rate in one spanwise wave is zero, the maximum variation of local heat transfer rate along
z-direction occurred at z=0 and 2�=a. The variations of local CfX =Cfb and NuX =Nub along the
axial direction at z=0 are shown in Figure 7(a) and Figure 7(b), respectively. The friction
factor coe�cient for the turbulent boundary layer �ow based on the one-seventh power law
velocity pro�le [27] is

CfX ≈ 0:027Re−1=7X or CfX Re1=2≈ 0:027Re5=14X =0:027[(GXRe=2)2=3]5=14 (20)

or

CfX =Cfb=0:081[(GXRe=2)2=3]5=14
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FORMATION OF GOERTLER VORTICES 1335

Figure 2. Development of perturbation amplitude pro�les at speci�ed x positions for Ro=0 on a
concave surface (Pr=0:7, Re1=2=250 and a∗ = 1:34).
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Figure 3. Development of perturbation amplitude pro�les at speci�ed x positions for Ro=−0:5 on a
concave surface (Pr=0:7, Re1=2=250 and a∗=1:34).
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Figure 4. Development of perturbation amplitude pro�les at speci�ed x positions for Ro=2 on a concave
surface (Pr=0:7, Re1=2=250 and a∗=1:34).
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Figure 5. Development of perturbation amplitude pro�les at speci�ed x positions for Ro=0 on a convex
surface (Pr=0:7, Re1=2 = 250 and a∗=2:0).
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Figure 6. Development of perturbation amplitude pro�les at speci�ed x positions for Ro=−2 on a
convex surface (Pr=0:7, Re1=2=250 and a∗=2:0).
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Figure 7. (a) Friction factor and (b) Nusselt number for Ro=−0:2, 0, and 2 on a concave surface.

and the correlation equation for turbulent forced convection [28] is

NuX = 0:0296Re
4=5
X Pr1=3 or

NuXPr−1=3Re
−1=2
X =0:0296Re3=10X =0:0296[(GxRe=2)2=3]3=10 (21)
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Table II. Onset position x∗ for criterion yi=
∫ x∗

0 Maxj|v(n)i; j | dx=0:002 on a concave surface.

Ro x∗ G∗
X a∗x∗1=2

−0:9 0.560 209.5 1.0
−0:7 0.306 84.6 0.74
−0:5 0.222 52.3 0.63
−0:3 0.182 38.8 0.57
−0:2 0.168 34.4 0.55
0.0 0.162 32.6 0.54
1 0.106 17.3 0.44
2 0.088 13.0 0.40
4 0.070 9.3 0.35
6 0.060 7.3 0.33
8 0.054 6.3 0.31
10 0.050 5.6 0.30
12 0.046 4.9 0.29

Note—These values are evaluated by using Re1=2 =250, a∗=1:34, Pr=0:7 and u0 =10−3.

or

NuX =Nub=0:089[(GXRe=2)2=3]3=10

where f′′(X; 0)=0:332 and −�′b(X; 0)=0:332 of Blasius �ow at Ro=0 and Pr=0:7 are chosen
for reference.
The friction factor and the Nusselt number are also shown for comparison. The gradients of

the velocity and the temperature at the wall start to deviate from the laminar forced convection
at downstream of x∗, due to the secondary longitudinal vortex �ow on the heated concave
wall. The e�ect of rotation on Goertler vortices are more pronounced when the values of
rotation number is decreased/increased, as compared with zero rotation. Similar observations
were also made by Edo et al. [5].
The critical values of G∗

X and the local critical wave number a∗x∗1=2 may be converted to
G∗

� and a′∗�, respectively, by the following transformations:

G∗
� =

U∞�
�

√
�
R
=[(0:664)3G∗

X =2]
1=2 (22)

and

(a′�)∗=

(
2�
�
0:664X

Re1=2X

)∗
=0:664(ax1=2)∗ (23)

where the momentum thickness �=0:664X=Re1=2X . The e�ect of rotation on the critical Goertler
number G∗

X on a concave surface is listed in Table II and Figure 8. It is observed from the
data that a decrease in the rotation number Ro from 0 to −0:9 is to increase up to 6.4 times
the value of critical Goertler number G∗

X . For negative rotation the Coriolis force counteracts
the centrifugal force and increases the critical Goertler number. While an increase in the
rotation number Ro from 0 to 12 is to decrease G∗

X by 0.15 times. It is clear that positive
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Figure 8. The relation between the critical values G∗
� and Ro on a concave surface.

Table III. Onset position x∗ for criterion yi=
∫ x∗

0 Maxj|v(n)i; j | dx=0:002 on a convex surface.

Ro x∗ G∗
X a∗x∗1=2

−0:1 0.176 36.9 0.839
−0:3 0.166 33.8 0.815
−0:5 0.160 32.0 0.800
−0:7 0.154 30.2 0.785
−1:0 0.146 27.9 0.764
−2 0.130 23.4 0.721
−4 0.112 18.7 0.669
−6 0.100 15.8 0.632
−8 0.094 14.4 0.613
−10 0.088 13.1 0.593
−12 0.084 12.2 0.579

Note—These values are evaluated by using Re1=2 =250, a∗=2:0, Pr=0:7 and u0 =10−3.

rotation destabilizes the �ow, as the Coriolis force acts in the same direction as the centrifugal
force.
The e�ect of rotation on the critical Goertler number G∗

X on a convex surface is listed
in Table III and Figure 9. It is observed from the data that decrease in the rotation num-
ber Ro from −0:1 to −12 is to decrease the value of critical Goertler number G∗

X by 0.33
times. This is due to the Coriolis force counteracts the centrifugal force, thus destabilizes
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Figure 9. The relation between the critical values G∗
� and Ro on a convex surface.

the �ow. The results of the present study show a reasonable agreement with the previous
experimental data [26].

5. CONCLUSIONS

1. The e�ect of rotation on the destabilization and stabilization of the Blasius �ow on a
curved surface for the formation of Goertler vortices are studied numerically by using
�ow visualization onset criterion and a linear instability model.

2. A decrease in the rotation number Ro from 0 to −0:9 is to increase up to 6.4 times
the value of critical Goertler number G∗

X on a concave surface. While an increase in
rotation number from 0 to 12 is to decrease G∗

X by 0.15 times.
3. A decrease in the rotation number Ro from −0:1 to −12 is to decrease the value
of critical Goertler number G∗

X by 0.33 times on a convex surface. This is due to
the Coriolis force counteracts the centrifugal force, thus destabilizes the �ow. The
results of the present study show a reasonable agreement with the previous experimental
data.
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NOMENCLATURE

a′; a dimensional and dimensionless wave number, a′=aRe1=2=R
Cf friction factor, 2�w=�U 2

∞
F velocity, pressure or temperature function
f reduced stream function,  (�XU∞)−1=2

GX local Goertler number, 2X Re1=2X =R
GX;rot local rotational Goertler number, 2(�X=U∞)Re

1=2
X

h local heat transfer coe�cient
p′; p dimensional and dimensionless pressure, p′=�U 2

∞p=Re
Pr Prandtl number, �=	
NuX local Nusselt number, hX=k
R radius of curvature (m)
Re Reynolds number based on radius of curvature, U∞R=�
ReX local Reynolds number, U∞X=�
Ro rotation number based on radius of curvature, �R=U∞
T temperature (K)
t′; t dimensional and dimensionless perturbation temperature, t′=(Tw − T∞)t
U; V;W dimensional velocity components (m/s)
u; v; w dimensionless perturbation velocity components
u′; v′; w′ perturbation velocity components
u0 initial constant perturbation velocity at x=0
X; Y; Z Cartesian co-ordinates (m)
x; y; z dimensionless Cartesian co-ordinates as de�ned in (8)

Greek letters
� rotation speed (rad/s)
	 thermal di�usivity of �uid
� boundary layer thickness (m)
� Blasius similarity variable, Y=(�X=U∞)1=2

� momentum thickness, 0:664X=Re1=2X
�b dimensionless basic temperature, (T − T∞)=(Tw − T∞)
� wave length in Z-direction (m)
� dynamic viscosity of �uid (kg-m/s)
� kinematic viscosity of �uid (m2=s)

 vorticity function in X -direction de�ned in (9) (1/s)
 stream function (m2=s)
� local wall stress

Superscripts
∗ onset position

Subscripts
b basic �ow quantity
p perturbation quantity
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w wall condition
X local co-ordinate
�r characteristic boundary layer thickness
∞ free stream condition
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